This is a Korean review of "Dataset Distillation by Matching Training Trajectories" presented at CVPR 2022. TL;DR합성데이터를 학습할 때, 모델의 파라미터가 실제 데이터로 학습했을 때의 파라미터 궤적과 유사한 경로를 따르도록 설계함.이를 위해, 실제 데이터로 사전 학습된 전문가 네트워크의 학습 궤적(trajectory)을 미리 계산하고 저장함. Introduction기존 연구는 주로 낮은 해상도의 데이터셋 (e.g., MNIST, CIFAR)에만 국한되고, 다음의 한계가 존재함.여러 반복을 unroll하는 과정에서 학습 불안정성 발생막대한 연산 및 메모리 자원이 요구실제 데이터의 한 학습 스텝을 합성 데이터의 한 스..